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In the present paper explicit sharp estimations are provided for the rate of con
vergence of basically all known representation formulae for operator semigroups
which in an earlier paper have been shown to arise from a single general
probabilistic representation theorem based on a special version of the weak law of
large numbers. As a main tool, sharp estimations for moments and moment
generating functions of suitable random variables are used. Some of the results are
applied to exponential operators as well as to a class of Poisson approximation
theorems in probability theory. 1985 Academic Press. Inc.

1. INTRODUCTION

In a preceding paper [23] we have shown how basically all known
representation formulae for (Co)-semigroups of operators such as those of
Hille and Phillips [12], Kendall [15], Widder and Chung [6], Shaw [27]
and others can be subsumed under a single general probabilistic represen
tation theorem derived from a weak law of large numbers for a random
number of summands. Conversely, for a very large class of representation
theorems, it can be shown that only such probabilistic representations are
possible [22]. This emphasizes the importance of probabilistic methods
also for an approximation-theoretic analysis in this field. In fact, early
approaches to the estimation of rates of convergence for some of these
theorems given by Hsu [13] and Ditzian [7-9] use hidden probabilistic
arguments such as Markov-type inequalities and moment calculations,
while in the recent paper [4] by Butzer and Hahn probability calculus is
extensively applied. However, the latter approach deals only with the
second modulus of continuity, and, due to its special setting, does not
provide the best possible results. In the present paper, we shall therefore
establish explicit sharp estimations for the rates of convergence, both
generally and individually, involving different kinds of moduli of continuity
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and various direct theorems. This is possible by thorough estimations of
moments and moment-generating functions of the underlying random
variables and a more general Taylor expansion of the semigroup. The
probabilistic approach chosen in this paper also permits an improvement
of the order of convergence in the spirit of Bernstein [1 J and
Voronovskaja [28J; their ideas carryover to semigroup theory almost
literally. Finally, the results obtained can be applied to classical operators
of approximation theory, among them Bernstein polynomials and the
operators of Szasz, Baskakov, Meyer and Konig and Zeller and others
which are also referred to as exponential operators in May [17J, and
which in fact share many properties of operator semigroups due to their
common probabilistic background (cf. also Ismail and May [14J,
Ramanujan [25J and Lindvall [16J). To demonstrate the broadness of
possible applications, we shall conclude with investigations of the rates of
convergence for a class of Poisson approximation theorems in probability
theory, being initiated by Le Cam [5J and Serfling [26J (cf. also [20J for
a corresponding semigroup setting).

Due to lack of space, proofs will not always be given in full detail. These,
however, can easily be completed by Ref. [24J, of which the present paper
is an extended part.

2. PRELIMINARIES

Although our notation will closely follow [23J it will be necessary to
give a short account of basic definitions and theorems from semigroup
theory and probability. For further details, we refer to the monographs of
Butzer and Berens [3J and Billingsley [2].

In what follows we are concerned with a Banach space :!E with norm 11.11

(which will also denote the operator norm) and the Banach algebra lff(.o£)
of bounded endomorphisms on .0£. .?4(:!E) denotes the Borel a-field
generated by the strong topology over :!E. We consider a (Co)-semigroup of
operators {T( t) I t ~ O} £;; lff( .0£), for which finite constants M ~ 1 and W ~ 0
exist such that

t~O. (2.1 )

For the infinitesimal generator A let A r
, r ~ 1, denote the rth power of A

with domain D(A r
), and R(A)= SO" e-AtT(t)dt, A>W, denote the resolvent

of the semigroup which is to be understood as an extended Pettis integral
(see [23] for definitions and properties).

For a real-valued random variable X defined on some probability space
(Q, d, P) let E(X) denote its expectation. If ~ = E(X) exists then a2 =
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(12(X) = E(X - ~)2 is also called the variance of X. Let further t/! x(t) = E(t X
),

t ;::: 0, and t/! {( t) = E(e IX
), t E IR, denote the probability generating function

and the moment-generating function of X, resp. If N;::: 0 is an integer
valued random variable, then also t/!N(t)=Lr~oP(N=k)tk, t;:::O (which
explains the name), and if {Yk ; kEN} is a sequence of independent, iden
tically (as Y, say) distributed random variables, independent of N, then for
the random sum X = Lr:~ 1 Yk we have

t E IR. (2.2)

For convenience, the symbol E(.) will also be used for the extended Pettis
expectation introduced in [23]. The following important theorems of
probability theory will be of essential interest in the sequel.

THEOREM 2.1 (Jensen's Inequality). Let X be a real-valued random
variable with values in some interval K and with finite expectation ~. Then
~ E K, and for any convex function, continuous on K, we have

E(g(X»;::: g(O

provided g(X) is integrable, i.e., E( g(X)) is finite.

(2.3)

THEOREM 2.2 (Markov's Inequality). Let X be a real-valued random
variable with E(IXI"') < 00 for some IX> O. Then for every x> 0,

P(IXI > x) ~ x-"'E(IXI"'). (2.4 )

THEOREM 2.3 (Extended Central Limit Theorem). Let X be a real-valued
random variable with E(X) = 0 and (12 = (12(X) > O. Then for any sequence
{Xn ; n EN} of independent, identically (as X) distributed random variables,

~ f X k~ Y (n --+ !Xl) (2.5)
vnk~l

where Y is a normally distributed random variable with mean 0 and variance
(12, and --+fll denotes convergence in distribution. If further the moment
generating function t/! { exists in some neighbourhood of the origin, then also

(n --+ !Xl). (2.6)

While the first part of Theorem 2.3 is well known it should be mentioned
that relation (2.6) is a consequence of the uniform integrability of the

sequence {(1/~)Lk~l Xk;nEN}, due to the existence of t/!{ (cf. also
Billingsley [2]).
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3. ESTIMATIONS OF MOMENTS AND GENERATING FUNCTIONS

The usefulness of estimations of the above kind is due to the fact that in
probabilistic representation theorems the extended Pettis expectation
E[T(X)] plays a central role where X is a suitable non-negative real ran
dom variable; in fact, we have

IIE[T(X)] II ~Ml{!~(w) (3.1 )

where M and ware the characteristic constants of the semigroup according
to (2.1) (cf. [23]).

Further, if X is, in some probabilistic sense, close to its expectation ~,

then

(3.2)

for f E D(A 3) as will-among other results-be shown in Section 4. In par
ticular, if X = (lin) I:Z = 1 Xk is the arithmetic mean of non-trivial, indepen
dent and identically distributed (i.i.d.) random variables, relation (3.2)
provides a large class of representation theorems due to the classical law of
large numbers (see Butzer and Hahn [4] and [19,21]). In this case, the
rate of convergence is exactly (1)( lin) for n -> 00 since then (j2 =
n - 2 LZ ~ 1 (j2(Xd = n - 1(j2(Xd, and the remainder terms are of order
(I)(n - 3/2); this is typical for approximation by operators of probabilistic
type (see also Hahn [10]). Further, by the Extended Central Limit
Theorem 2.3, E(I(1In)I:Z~lXk-~I"')=(I)(n-"'/2) for n->oo and a>O
which allows for explicit estimations of the remainder terms using moments
and generating functions (cf. also Hall [11] and the references given
therein for related problems of moment estimations). For a thorough
treatise of the latter kind of approximations the following results will be
needed.

LEMMA 3.1. Let X be a non-negative real random variable with
l{! ~(b) < C1J for some <5 > O. Then all positive moments E(X"') exist, and

Further, for ~ = E(X), we have

l{!~(t) = 1+ ~t + R*(t),

where

(cx>O).

t~b,

(3.3 )

(3.4 )

for ItI<'7, andO<'7~b.

(3.5)
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Proof For a, {3 > 0, x ~ 0 we have

x" ~ (al{3)" e - "ePx

275

(3.6)

with equality for x = al{3, from which (3.3) follows by integration, letting
{3 = b. To prove (3.4) and (3.5), note that for all real x,

0~eX-1-x~(x2/2)eIXI, (3.7)

hence 0~R*(t)=t/JNt)-I-~t~(t2/2)E(X2eIIIX). The statement now
follows from (3.6) by integration with a=2, {3=YJ-ltl· I

THEOREM 3.1. Let X be a non-negative real random variable with expec
tation E( X) = ~ and with t/J Ab) < 00 for some b > O. Let further {Xn;n EN}
be an i.i.d. sequence of random variables, identically distributed with X. Then,
if Xn= (lin) Lk~ I Xk denotes the arithmetic mean of XI'"'' Xn, we have

for 1tl < nYJ, and 0 < YJ ~ b. Further,

E(IXn- ~n ~ 2n -<X/2(at/Jt(YJ)leYJ2)"/2

for n ~ 15aNt(YJ) (a> 0).

Proof Since Xl"'" Xn are i.i.d., we have

(3.8)

(3.9)

(3.10)
t/JVt)={t/JtG)}n={I+~~+R*G)}n

~exp {t~ + nR* G)}, I~I < YJ,

from which the r.h.s. of (3.8) follows by Lemma 3.1. The l.h.s. of (3.8) is a
consequence of Jensen's inequality, Theorem 2.1. By the inequalities e1xl ~

eX+e-x, xEIR, and (3.6), we can deduce from (3.8)

E(IXn-~I<X)~2n-<X/2(al{3)<xe-"exp{ 2{32t/Jt(YJ)} (3.11)
e2(Yf - {3/~)2

for a, {3 > 0, n> ({3IYf f Choosing n at least as large as 15({3IYf )2, (3.11) sim
plifies into
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But the function g(P) = P - aec
p2 with some positive constant c is minimal

for p=JrJ./2c. Letting c=t/J}(1J)/21J 2
, this gives (3.9). I

Note that the inequalities (3.8) and (3.9) are sharp in that they imply

and
(t -+ 0, n fixed)

(n -+ 00, t fixed)

(3.13 )

(3.14)

which are in fact the exact orders of convergence, and that by the Extended
Central Limit Theorem, (9(n - a/2) is the exact order of convergence for the
central mean of order (x.

It should be pointed out that the estimations given by (3.8) and (3.9) are
especially well suited for our purposes (compared with classical ones such
as in Hall [11 J) since they essentially use the moment-generating function
of the underlying random variable X which in the most interesting cases
(see [19, 21, 22J) is closely connected with the semigroup representation
via (2.2). It will thus be possible to give estimations of the rate of con
vergence mainly by means of the different "representation functions" used
in the representation theorems themselves, avoiding the probabilistic ter
minology which is necessary for the proof of the corresponding results.

4. SOME DIRECT PROBABILISTIC ApPROXIMATION THEOREMS

In this section we will establish a collection of various direct theorems
connected with relation (3.2) and others, both for several general cases as
well as for the individual representation theorems mentioned in the
Introduction. In contrast to the recent paper by Butzer and Hahn [4J, one
of the main tools here will be the general Taylor expansion of the
semigroup as stated in tbe following result.

LEMMA 4.1. For f E D(A r), r ~ 1, and arbitrary s, t ~ 0 we have

where for s > t

fl (t - uy-l T(u) Arf du = _r(t - uy- 1 T(u) Arf du (4.2)
s (r-l)! I (r-l)!

by definition.
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Proof Apply linear functionals and proceed by induction, using partial
integration. I

THEOREM 4.1. Let X be a non-negative real-valued random variable with
t/J !(<5) < Cf) for some <5 > O. Let further ~ = E(X) denote the expectation of X
and (J2 = (J2(X) its variance. Then the following relations hold:

IIE[T(X)] f - T(~) f II
~ M IIAfl1 {eW~E(IX - ~I) + w{ E(X - ~)4} 1/2{ t/J!(2w)} 1/2}

~ M IIAf II {(Jew!; + w{ E(X - ~)4} 1/2{ t/J!(2w)} 1/2}

for fED(A), if <5~2w; (4.3)

IIE[T(X)] f - T(~)fll

~ ~ IIAYII {(J2eW!; + w{ E(X - ~)4}3/4{ t/J!(4w)} 1/4}

for fED(A 2), if <5~4w; (4.4)

II E[ T( X) ] f - T( ~) f - ~2 T( ~) A2f II

~ ~ IIA 3fli {eW~E(IX- ~13) + w{E(X _ ~)6}2/3{ t/JN3w)} 1/3}

for fED(A 3), if <5~3w. (4.5)

Here M and w denote the characteristic constants of the semigroup given by
(2.1 ).

Proof By Lemma 4.1, for fE D(A r
),

I'(t-uY- 1

s (r-I)! T(u)A'idu

is a strongly continuous function of the variables sand t, hence also aI(X)
measurable, implying

E[T(X)]f-T(~)f=E[r T(u) AfdU]. fED(A). (4.6)

Let 1B denote the indicator function for the event BEd, i.e., 1B(x) = 1 iff
x E B, and 0 otherwise. Then
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= II E [1 {X>OrT(u) Af du -1 {X";0t T(u) Af duJII

~E[I{X>O Ilr T(u) AfdU11 + 1{X"; 0 lit T(u) AfdullJ

~ M IIAfl1 E[ 1{X>Ore
Wu

du+ 1{X"; 0 t e
Wu

duJ
~ M IIAfl1 E[I (x> O(X-~) eWx + 1{X"; O(~ - X) eW';]

= M IIAfli E[IX - ~I eW'; + 1{x>O(X - ~)(eWX _ew,;)]

~ M IIAfl1 E[IX - ~I eW'; + wI {x>';j(X - 0 2 eWX ]

~ M IIAf II E[IX - ~I eW'; +W(X - 0 2 eWX ]

~ M IIAf II {ew';E(IX - ~I) + W{ E(X - ~)4} 1/2{ E(e 2wX )} 1/2} (4.7)

by Holder's inequality. This proves (4.3), since by Jensen's inequality,
Theorem 2.1, {E(IX-~1)}2~E(X-~)2=(J2. Relations (4.4) and (4.5)
follow similarly, using Lemma 4.1 with r = 2 and r = 3, resp. I

Of course, other conjugate indices for Holder's inequality could also be
used in the preceding proof; however, the choice made above turns out to
be of special importance since the fourth and sixth central moments are
more easy to calculate than moments of non-integer order.

It should be pointed out that for equi-bounded semigroups, i.e., w = 0
(which cover also contraction semigroups), the existence of the moment
generating function r/J.t is not necessary; instead, only the existence of the
second and third moment of X, resp., has to be imposed.

As a first important consequence of Theorem 4.1, we shall for simplicity
reformulate the general probabilistic representation theorem for equi-boun
ded operator semigroups, endowed with estimations for the rate of con
vergence (cr. [23, Theorem 2] ).

THEOREM 4.2. Let {N( '!) I '! > O} be a family of non-negative integer
valued random variables with E(N( '!)) = '!( for some (> 0 such that
(J2(N(r)) = o(r2) for r -+ 00. Then (I/r) N(r) converges in probability to (for
r -+ 00. Let further Y be a non-negative random variable with E( Y) = Y such
that (J2( Y) exists. Then for any equi-bounded operator semigroup, we have

(4.8)



REPRESENTAnONS FOR OPERATOR SEMIGROUPS

in the strong sense where ~=(y. Moreover, for fED(A), we have
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r>O. (4.10)

Proof Obvious from a modified version of the general Theorem 2 in
[23], Theorem 4.1 and Lemma 3 of Chung [6]. I

The most important specialisations of (4.8) are given by Y == y, leading to
so-called first main theorems, and Y being exponentially distributed with
mean y, leading to so-called second main theorems since then E[T(Y/r)] =
(r/y) R(r/y).

Choosing {N( r) I r > O} as a Poisson process in Theorem 4.2, Hille and
Phillips' representation theorems are reobtained, with rates of convergence
even for the general case of arbitrary operator semigroups (cr. Corollary 6
in [23]).

THEOREM 4.3. Let {T(t) I t ~ O} be an arbitrary strongly continuous
operator semigroup, and let A h = (l/h)( T(h) - I) for h > O. Then

II T(~) f - e~Al/i II

~ Mew~ IIAf II {A + 2w ~ exp {w:~ e2W
/'} }

for fED(A) (4.11 )

II T(¢) f -e~Al/ill

~~ eW~ IIA2fli H+2W #exp {2~2~ e4w
/'}}

1
for fED(A 2

) and r~Z; (4.12)

T(¢) f - e~Al/i = _1 T(~) A 2f + (9 (_1_)
2r r~

for fED(A 3
) and r--+ 00, (4.13)
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and

II T(e) f -exp{erZR(r) - erI} f II

~ Mew, IIAfl1 { m+ 4w e' exp { 2w
z
e}}'1/-; r r-2w

for fED(A) and r>max(4;2w); (4.14)

II T(e) f - exp{erzR(r) - erI} f II

~~ eW'IIAzfll {2r
e
+ 6W r~exP{r~:~}}

for fED(A z) and r>max(16;4w); (4.15)

T(e) f -exp{ erZR(r) - erI} f = -~ T(e) Ay+ (!) (r ~)

for fE D(A 3
) and r --+ 00. (4.16)

(4.17)r>O,

Moreover, a possible estimation of the remainder terms R1(f) and Rz(f),
say, in (4.13) and (4.16), resp. is given by

IIR1(f)11 ~~ e
W

'/IA
3
fll L~expGe

1

/
0 )

38w (e '- 3w
ze )}+-exp - e l

/
yT +-- e3W

/
T

,

r Z 3 2r

IIRz(f)1I ~ ~ e
W

' IIAYII {r ~ezm+ 3:~ e' exp (r3~~~)}

for r > max(9; 3w). (4.18)

Proof Let {N( r) I r > O} be a Poisson process with parameter e, i.e.,
E(N( 1)) = e, and let {Yn I n EN} be an i.i.d. sequence of random variables
with unit mean, independent of the Poisson process, distributed as Y;:: 0,
say. Define

1 N(T)

X(r) =- L Yk>
tk~l

r>O. (4.19 )

In order to prove (4.11) to (4.13) and (4.17), choose Y == 1. Then
E(X(t)) = e, cr 2(X(t)) = e/t, and

4 C e e2

E( (X( r) - e) ) = 3 '2 +"3 ~ 4 '2
r t r

t/J}(T)(t) = exp{ er(et
/
T- I)},

1
for t ~~'

t~O.

(4.20)

(4.21)



REPRESENTAnONS FOR OPERATOR SEMIGROUPS

Further, for r:t. > 0,

E( IX( r) - ~I <X) ~ 2r - <x/2(r:t./e)<x e --f'~IjJ!(T)(vTr)

~ 2r - <x/2(r:t./e)<x exp (i ell-f'). r > 0,
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(4.22)

which can be proven by methods parallel to those of the proof of
Theorem 3.1. Combining (4.20) to (4.22) with Theorem 4.1, the first part of
the theorem follows. For the remainder part, let Y be exponentially dis
tributed. Then again E(X( r)) =~, (j2(X( r)) = 2~/r, and for r:t. > 0,

Also,

E(IX(r) - ~n ~ 2r -<X/2(r:t./e)<X exp C~~). r> 1. (4.23 )

1jJ!(Tj(t) = exp ( ~rt ),
r-t

r > t~O,

O~t<1.

(4.24)

(4.25)

Using again Theorem 4.1 and the monotonicity of the mapping
r -+ r/( r - vTr), r> 1, the proof is completed. I

It is no surprise that the rate of convergence in (4.13) and (4.16) is
exactly (9(1/r) with remainder terms of order (9(r- 3/2 ) since the Poisson
process is an independent increments process, hence in a certain sense
behaves like a sum of i.i.d. random variables (cf. also (3.2) and the sub
sequent remarks). A corresponding direct theorem for this important case
is given in the following result (cf. also Corollary 4 in [23], and [21]).

THEOREM 4.4. Let N be a non-negative integer-valued random variable
with E(N) = (, and Y~ 0 be a real-valued random variable with E( Y) = y
such that IjJ N( IjJ ~({»)) < 00 for some () > O. Then for an arbitrary strongly con
tinuous operator semigroup,

(4.26)
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in the strong sense where ~ = (y. Moreover, for fE D(A),

(
2W 60 )

for n > max ~'l/J N( l/J H11 ))' and 0 < 11 :::; 0, (4.27)

:::;~ eW~ IIAzfll U«((JZ(y)+yZ(JZ(N))

+ 4w {l/J N(l/Jt(11))}3/Z exp {2W
Z

l/J N(l/Jt(11~)}}
11 3n ';;; n(11- 4w/n)

for n>max(4W, ;~ ))), and 0<11:::;0, (4.28)
11 l/J N( y(11

while for fE D(A 3
),

(4.29)

(n --+ 00)

a possible estimation for the remainder term R(f), say, being

(4.30)
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Proof Let {Yn In EN} be an i.i.d. sequence distributed as Y, indepen
dent of N, and let

(4.31 )

Let further {Xn I n EN} be another i.i.d. sequence, distributed as X. The
assertions now follow from (2.2), Theorem 3.1 and Theorem 4.1, where in
the latter X is to be replaced by Xn- I

Again first and second main theorems are reobtained from Theorem 4.4
if Y == y or Y is exponentially distributed with mean y; in the first case,
I/JHt) = eY

', while in the second case, I/J~(t)= 1j(l-yt), t< 1/}'.
Specialising the distribution of N as binomial, geometric, etc., the

individual representation theorems mentioned in the Introduction now are
also reobtained from Theorem 4.4, all having a rate of convergence of

(D(1jn) for fE D(A 2) with a remainder term of order (D(1jn j;;) for
f E D(A 3) (n --+ 00 ). Of course, using the individual moments and generating
functions here, improved estimations compared with those of Theorem 4.4
are possible. To shorten matters, we will present some results of this kind
for fE D(A 2

), the most important case also for estimations using the second
modulus of continuity; for details, see [24].

COROLLARY 4.1. For fE D(A 2), and ~ > 0, we have

~ ~ eW~ IIA 2fli [~(l;0 + 2w

1
for n ~ ~(1 _ ~) 6 and 0 < ~ < 1 (Kendall),

II T( ~) f - {( 1 - ~) I + ~nR(n )}nf II

~~ eW~ IIA 2fli [~(2;0 +25w )(1 :P3 exp {n~:~}]

for n > max (4W,~) and 0 < ~ < 1 (Chung),
1+~

(4.32)

(4.33 )
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~ M eW~ IIA~f11 [~(l + ~) + 2w 2~ (l + ~)3 exp {4W2~(1 +~) e
4W1n

}]
2 n n3 n - 4w~e4wln

for n> max (4W(1 + ~), ~(l ~ 0 + 6) (Shaw), (4.34)

II T(~) f - {(1+ ~) I - ~nR(n)} - n f II

~ ~eW~ IIA2fli [~(2: ~) +4(2 + ~)3WJ(l :P3eXP{n~:~il++~~~}]

for n>max(4W(1+O, l~~)(ChUng), (4.35)

II T(~)f-{2I- T(~)} -nfll
M [2e 8W~3 { 8w2ee4w~/n }]

~2 eW~ II A 2f II -;:;- + n';;; exp n _ 4w~e4w~/n

for n > max(7, 6wO (Shaw),

II T(~)f -{ZRG)ffll
~ ~ eW~ IIA 2fli [~2 + 3~~w exp {n~:~~}]

for n > 4w~ (Post and Widder),

liT(O f - {r~~) [") t~-le-nrr(t)(.) dtf fll
M [e rr {4W2~ }]~2ew~ IIA 2fli -;+ 3 J3 w -V~exp n-4w

for n > max ( 4w, ~) (Butzer and Hahn ).

(4.36)

(4.37)

(4.38 )
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5. OTHER PROBABILISTIC ApPROXIMATION THEOREMS
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In this section, we shall present some rate of convergence results involv
ing the first and second modulus of continuity. In particular, let

"'1(o,I,J)'~ sup UTill1 - T(sl/ll,
1'_11"".,.

denote the first modulus of continuity, and

b>O,I"O,JEt1:, (5.1)

",:(o,fl ,~ sup{ II T(I) - T(s) III I°<;s, 1<; b, Is ~ II <; J},

b>O,b>O,fE!£, (5.2)

denote the rectified modulus of continuity in [0. b]. In this section we will
only deal with (5.1) since by the inequality

wt(b,J) ~ sup wi(b.I,J)
o"",;/t-"

(5.3)

(cr. Ditzjan [7]) corresponding results can be formulated also in terms of
the rectified modulus of continuity. Finally, let

""(,,f) ~ sup 11(1111-1)'/11,
O",,,~

~>O./E!£, (5.4)

denote the second modulus of continuity. For simplicity, general results
will be given only in the setting of Theorem 4.4 which covers all interesting
cases except for the continuous versions of Hille and Phillips' theorems
(Theorem 4.3), for which corresponding results will be stated separately.
However. for contraction semigroups a general result in the setting of
Theorem 4.2 involving the second modulus of continuity will be available,
improving corresponding results of Butzer and Hahn [4].

THEOREM 5.1. Let X be a non-negative real-valued rondom variable with
l/I;(o) < 00 for some 0> 2w. Further denote ~ = E(X). Then for arbitrary
I; > O. t:::;; o. IE!l" there holds the inequality

IIE[T(X)] I-TWill (5.5)

:S;wi(t, ~,f)

+ e -.,M HIli {e- 2/~l/I;(2t) + e2'¢l/I;( - 21)} 1f2:{ Jt/J;(2w) + eW'}.
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IIE[T(X)] 1- T(¢) III

:::; f II T(X) I - T(~)/II dP+ f II T(X) I - T(~) III dP
IX-';I,,;c IX-';I>c

:::; wt(£,~, f) + {P(IX - ~I > £} 1/2{E(11 T(X) I - T(~) 111 2)}1/2

:::; Wn£, ~,f) + {P(e 2tIX
-';1 > e2ct

)} 1/2{ jE(11 T(X) 111 2)+ IIT(~)/II}

:::; wt(£, ~,f)+e- ct JE[exp(2t IX- ~I)] {M II I II jl/J~(2w)

+M II I II eW
';}

by Holder's inequality and Markov's inequality (Theorem 2.2), applied to
the random variables exp(2t IX- ~I). Relation (5.5) now follows by means
of the inequality e1xI :::; eX + e - X, x E IR. I

Theorem 5.1 provides an improved estimation of a formula due to
Chung [6, Lemma 1].

The following theorem will give the analogue of the general Theorem 4.4
in terms of the first modulus of continuity, from which the individual
estimations can be derived by specialisation as in Section 4.

THEOREM 5.2. Let N be a non-negative integer-valued random variable
with E(N) = (, and Y ~ 0 be a real-valued random variable with E( Y) = y
such that l/J N(l/J ~(b)) < 00 lor some b > O. Then with ~ = (y,for £ > O,fE fl£,

Proof By imitation of the proof of Theorem 4.4 using Theorem 5.1 with

t=~. I
It should be pointed out that the exponential convergence in (5.6) is

essentially due to the existence of the moment-generating function, which
implies exponential convergence of the deviation probabilities
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P(IXn- ~I > 1:) to zero (cf. also Petrov [18]). Of course, again the choice of
HOlder's and other constants in (5.6) and (5.5), resp., is free to a certain
degree, hence also other explicit estimations could easily be. formulated.

We shall now state a corresponding result for the continuous versions of
Hille and Phillips' Theorem 4.3.

THEOREM 5.3. With the notation of Theorem 4.3, we have for all f E f!(,

O<y<!,

IIT(Of -e~Al!111

~wnr-Y,~,j)

+e-T(l/2-;'Mew~Ilfll J2 exp(~e2/JT) {I +exp (w:~ e2W/T)},

r > 0, (5.7)

IIT(~)f -exp{~r2R(r)-~rI} fll

~wr(r-Y,¢,j) +e-TIII2-;IMew~Ilfll J2exp(~~)

X{1+expC2~~~)}, r>max(4,2w). (5.8)

Proof By imitation of the proof of Theorem: 4.3 using Theorem 5.1 with

I: = r - Y and t = .;:r. I

In [7-9] Ditzian has stated similar rates of convergence for (5.7), (5.8)
and Widder's inversion formula (Theorem 5.2 with N == 1, Y being
exponentially distributed with mean ~), including the case y=! which he
proved to be the best possible choice for y (with a factor larger than 1 for
wt). His methods of proof also use Markov-type inequalities
(Theorem 2.2), without, however, stating the probabilistic background of
these. Also, his results are due to complicated estimations for the concrete
cases treated there, while our general result emerges from a single
estimation of this type (Theorem 5.1), giving additionally simple explicit
expressions for the constants involved.

A probabilistic argument for y = ! being the best possible choice could be
given as follows. By the Central Limit Theorem 2.3, the sequence
n 1

/
2(Xn - ¢) tends to a normally distributed random variable in dis

tribution, hence for I: being of order @(n- Y ) with y>!, P(IXn-~1>1:)
would tend to 1 for n -+ 00, i.e., the second summand in (5.5) and (5.6),
resp., would not tend to zero in this case. Note that for y =!, a strictly
positive limit less than one is attained for the sequence P(IXn-~1 >8) in

640/43/3-6
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the non-trivial case, hence stronger estimations than used in the proof of
Theorem 5.1 are necessary to obtain a corresponding result for this case.

For the remainder of this section, we shall deal with rates of convergence
results for contraction semigroups in terms of the second modulus of con
tinuity.

THEOREM 5.4. Under the conditions of Theorem 4.2, we have for f e: f!£

(5.9)r>O.

II T(~)f - ~ N(t) (E[ T(BJ)fll
(

I { y2 }1/2 )
~ KW 2 fi C(j2( Y) +7 (j2(N(r)) ,f,

Alternatively, if N is a non-negative integer-valued random variable with
E(N) = C, and Y~ 0 is a real-valued random variable with E( Y) = y such that
(j2( N) and (j2( Y) exist, then for f e: f!£

(5.10)ne:N.~ KW 2(~ {Cu2( Y) + y2u2(N)} 1/2, f ).

Here {T(t) I t ~ O} is a contraction semigroup of class (Co), and K denotes a
generic constant.

Proof Obvious from the Jackson-type inequalities (4.10) and (4.28) (cf.
Butzer and Hahn [4]); note that for equi-bounded semigroups the
assumptions of Theorem 4.4 can be weakened similar to those of
Theorem 4.2. I

Theorem 5.4 covers all first and second main theorems treated in Butzer
and Hahn [4]; moreover, due to the improved estimations (4.10) and
(4.28) the variances of the composed random variables now play the essen
tial role as claimed in [4] only for groups of isometric operators.

It should be pointed out that the corresponding expressions for the
individual representation formulas (4.32) to (4.38) as well as (4.12) and
(4.15) are immediately available from the estimations given there since the
individual variance term always is the leading term in brackets.

6. IMPROVEMENTS OF THE RATE OF CONVERGENCE

As was pointed out in the foregoing sections, the variance of the underly
ing random variables plays a central role in estimating the rate of con-
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vergence in the different representation formulas, giving the rate (9( lin) for
n --+ 00 in representations covered by Theorem 4.4, e.g. It should thus be
possible to improve the rate of convergen~e by suitable elimination of the
variance terms in the spirit of Bernstein [I] and Voronovskaja [28], who
introduced this approach in the analysis of the convergence behavior of
Bernstein polynomials. As will be shown in the following result, their ideas
carryover to semigroup theory almost literally.

THEOREM 6.1. Let N be a non-negative integer-valued random variable
with E(N) =" and Y~ 0 be a real-valued random variable with E( Y) =Y
such that l/J N( l/J Hb)) < 00 for some b > O. Then for an arbitrary strongly con
tinuous operator semigroup, with ~ = (y,

II T( 0 f - { l/J N ( E [ T (f)J)rf

+2ln «((T2(y) + y2(T2(N)) {l/J N ( E[T(f) J)} n A2fll

= (9 (~2) for n --+ 00, (6.1)

provided that f E D(A 4
). The order (9( I/n 2

) for n --+ 00 can in general not be
improved.

Proof According to the proof of Theorem 4.4, it is enough to prove
relation (6.1) when N=.l, i.e., l/JN(E[T(Yln)]t=E[T(Xn)] where
{Xn I n EN} is an i.i.d. sequence identically distributed with Y. A further
Taylor expansion in Theorem 4.1 yields

E[T(Xn)]f - T(Of

=(T:~) T(O Ay+~ E(Xn - ~)3 T(O A 3f + (9 (:2)
which implies that the l.h.s. of (6.1) can be estimated by

(6.2)

(n --+ 00)

(6.3 )~ IE(Xn-~)31 Mew~ IIA3fli +(9 (~2}

Now as a consequence of the Extended Central Limit Theorem 2.3,
E(Xn-~)3=Q(1/n;;;) for n--+oo; but also E(Xn-~)3=(1/n3)x
E(Lk= 1 X k - n~)3, which is a rational function of n, implying that, in fact,
E(Xn - 0 3 = (9(l/n 2

) for n --+ 00. This gives the desired estimation (6.1). The
rate of convergence cannot be improved except for trivial cases since the
remainder term in (6.2) originates from the moment estimation for
E(Xn - ~)4 which in this case is exactly (9(l/n 2

) by (2.6) and (3.9). I
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As in the concluding remark of Section 5, for the individual represen
tation formulas (4.32) to (4.38) the l.h.s. of (6.1) can again immediately be
derived from the estimations given there. Of course, relations analogous to
(6.1) can also be formulated in the setting of Theorem 4.2 or Theorem 4.3
which, due to the great similarity, will be omitted here. Further
improvements of the rate of convergence could be achieved by successive
elimination of remainder terms as indicated in Theorem 6.1. However,
things will get quite complicated for orders higher than (1)(1/n 2

).

7. EXAMPLES

To demonstrate the broadness of possible applications of the results
obtained in the preceding sections, we shall deduce some approximation
theorems for a class of exponential operators by specialisation on the
semigroup of translations, as well as some rate of convergence results for a
class of Poisson approximations in probability theory.

For approximation by Bernstein polynomials, we have the following
result.

THEOREM 7.1. For g E CEO, 1] and 0 < ¢ < 1 we have

Ig(¢) - k~O G) ¢k(l- ~t-k g (~)I

:::; 11g'11 fITl=TI:::; Ilg'~, nE N,
~----;;- 2y'n

if g' E CEO, 1],

Ig(¢) - k~O G) ~k(1_ ~t-k g G)I
(7.1 )

~ II "II ¢(1- ~) ~ IIg"ll
'" g 2n '" 8n '

if g" E CEO, 1],

g(¢) = k~O G) ~k(l_ on-k g G)
_ g"(¢) ¢(1- ¢) + (1) (_1_), n -+ 00,

2n n.j;I

if gil' E CEO, 1],

nEN,

(7.2)

(7.3 )
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Ig(~) - k~O G) ~k(1- on-k {g G)-~(12: ~) g" (~)}I

~l!L] 1~(1-~)(1-201 + 3ffg(4)11 e(1-02
6n 2 8n2

+ Ilg(4)11 ~(1 - O(6e - 6~ + 1)
24n 3

flg"'ll 3 Ifg(4)fl flg(4)lf
~ 60n2 + 128n2 + 480n 3 ' n EN,

if g(4) E C[O, I].
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(7.4)

Proof Let q: = UCB(JR), the space of all uniformly continuous and
bounded functions on JR, and {T( t) I t ~ o} the (contraction) semigroup of
left translations. Then A is the differential operator. For g E C[O, 1] let
g* E UCB(JR) denote a suitable extension of g to JR such that g* fulfills the
same smoothness conditions as g. Then (7.1) to (7.4) follow from
Theorem 4.4, (4.32) and a corresponding extension of Theorem 6.1 (with
N= I and Y being binomially distributed) when T(Og*(O) is con
sidered. I

Due to similarity of proof, we shall only state the following theorems
derived from Hille's and Shaw's representations (4.11) to (4.13) and (4.34),
involving Favard (or Szasz) and Baskakov operators.

THEOREM 7.2. For g E UCB(JR +) and ~ >°we have

,>0,

,>0,I g(~)-e-~< k~O (~:r g(~)1 ~ flg'll A,
if g' E UCB(JR + ),

Ig(0 - e - ~< k~0 (~r g ( ~) I~ II g" II 2~,'

if g" E UCB(JR + ),

g(~)=e-~< f (~rr g(~)_g,,(~)l.-+(9(_I_),
k=O k. r 2r,~

if g'" E UCB(JR + ),

< co (~,)k{ (k) ~ ,,(k)} (1)g(O=e-~ L -, g - --g - +(9"2'
k=O k. r 2r r r

if g(4) E UCB(JR + ),

all estimates holding uniformly in ~ in every bounded interval.

(7.5)

(7.6)

(7.7)

(7.8)
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THEOREM 7.3. For g E UCB(~ +) and ¢ > 0 we have

all estimates holding uniformly in ¢ in every bounded interval.

We shall conclude with an analysis of some Poisson convergence
theorems in probability theory via the Poisson convolution semigroup (cf.
[20]) as was first studied by Le Cam [5]. For this purpose, let f!{ = 100 be
the Banach space of all bounded sequences f= (/(0),/(1),... ), and the
linear contraction B on f!{ be defined by

Bf=t.\*f, fEX, (7.13)

where t.k denotes the unit mass in k E 7L +, and * means convolution. Then
A = B-1 is the generator of the Poisson convolution semigroup
{etA I t ~ O}, i.e.,

00 tk
et"i=e-tk~ok!t.k*f=P(t)*f, t~O, (7.14)
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where P(t) denotes the Poisson distribution over 7L + with expectation t.
Since Poisson limit theorems usually are expressed in terms of convergence
in distribution, we have to provide an adequate metric p on the set .H of
all probability measures over 7L +; one such is given by

1 W

p(P,Q)= sup IP(S)-Q(S)I=2 I IP({k})-Q({k})l,
s~z+ k~O

P, QE.H

(7.15 )

(cf. also Serfling [26]). In fact, convergence in distribution and p-con
vergence as well as norm-convergence (if measures are interpreted as
operators) are then equivalent, but only the latter provide useful statements
on the rate of convergence. In order to be able to formulate the various
Poisson limit theorems we shall need binomial and negative binomial dis
tributions B(n, p) and B(n, p), resp., with n EN, P E (0, 1), defined by

B(n, p)(S) = I G) pk(l-pt-k,
kESn {O,l •...•n}

- (k+n -1)B(n, p)(S) = L k pn(l_p)k,
kES

(7.16)

Note that the negative binomial distribution B(n, p) can also be extended
to a (non-integer) non-negative real parameter n in the same way.

We shall now demonstrate that the known Poisson convergence
theorems can be considered as special cases of (an analogue of) Kendall's
and Widder's representation theorems (4.32) and (4.37), resp. (cf. also
[2lJ), whereas the Butzer-Hahn representation (4.38) gives a new Poisson
convergence theorem. Of course, all of these are given with the exact rates
of convergence in the setting of Section 4.

THEOREM 7.4 (Classical Poisson Convergence Theorem). For n ~ ~ > 0
we have

with

II B (n,~) * f -P(~) * fll ~ ~: IIA 2fll, fEIW,

(7.17)

(7.18)
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and
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(n --+ (0) fE 100
•

(7.19)

Proof For (7.16) and (7.17), see [20]; (7.18) follows similarly from an
extended Taylor expansion. I

Note that B(n, ~/n) * f = {(1-~) I + ~(I+ Aln)}n * f, fE 100
, hence

(7.17) and (7.18) are analogues to Kendall's representation (4.32) in that
the semigroup T( lin) is replaced by the first two terms of the
corresponding Taylor expansion.

THEOREM 7.5. For ~ > °and all n E N, we have

with

(7.20)

liB (n, n : ~) *f - P( ~) *f II ~ ~: II AYII,

and for n --+ 00

(7.21 )

Proof We only need to show that for the resolvent, AR(A) f =
B( 1, AI( 1+ A)) *f for arbitrary A> 0, f E 100

; everything will then follow
from Widder's representation (4.37). But

(7.23 )

hence for f E IX

Using the Butzer-Hahn representation (4.38) in the same way as Widder's
representation in Theorem 7.5, we obtain a third type of Poisson con
vergence.
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THEOREM 7.6. For ~ > 0 and n EN, we have

with

295

(7.24)

and for n --+ 00

fEr"', (7.25)

Proof As in Theorem 7.5; note that

fE lao.

(7.26)

i.e., a negative binomial distribution is obtained by randomization of the
Poisson parameter according to a gamma distribution. I
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